Combining carbon ion irradiation and non-homologous end-joining repair inhibitor NU7026 efficiently kills cancer cells
نویسندگان
چکیده
BACKGROUND Our previous data demonstrated that targeting non-homologous end-joining repair (NHEJR) yields a higher radiosensitivity than targeting homologous recombination repair (HRR) to heavy ions using DNA repair gene knockouts (KO) in mouse embryonic fibroblast (MEF). In this study, we determined if combining the use of an NHEJR inhibitor with carbon (C) ion irradiation was more efficient in killing human cancer cells compared with only targeting a HRR inhibitor. METHODS The TP53-null human non-small cell lung cancer cell line H1299 was used for testing the radiosensitizing effect of NHEJR-related DNA-dependent protein kinase (DNA-PK) inhibitor NU7026, HRR-related Rad51 inhibitor B02, or both to C ion irradiation using colony forming assays. The mechanism underlying the inhibitor radiosensitization was determined by flow cytometry after H2AX phosphorylation staining. HRR-related Rad54-KO, NHEJR-related Lig4-KO, and wild-type TP53-KO MEF were also included to confirm the suppressing effect specificity of these inhibitors. RESULTS NU7026 showed significant sensitizing effect to C ion irradiation in a concentration-dependent manner. In contrast, B02 showed a slight sensitizing effect to C ion irradiation. The addition of NU7026 significantly increased H2AX phosphorylation after C ion and x-ray irradiations in H1299 cells, but not B02. NU7026 had no effect on radiosensitivity to Lig4-KO MEF and B02 had no effect on radiosensitivity to Rad54-KO MEF in both irradiations. CONCLUSION These results suggest that inhibitors targeting the NHEJR pathway could significantly enhance radiosensitivity of human cancer cells to C ion irradiation, rather than targeting the HRR pathway.
منابع مشابه
DNA-PKcs Inhibition Sensitizes Cancer Cells to Carbon-Ion Irradiation via Telomere Capping Disruption
Heavy-ion irradiation induces a higher frequency of DNA double strand breaks (DSBs) which must be properly repaired. Critical shortening of telomeres can trigger DNA damage responses such as DSBs. Telomeres are very sensitive to oxidative stress such as ionizing radiation. The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is the central component in the non-homologous end joining (N...
متن کاملThe Efficiency of Homologous Recombination and Non-Homologous End Joining Systems in Repairing Double-Strand Breaks during Cell Cycle Progression
This study investigated the efficiency of Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR) repair systems in rejoining DNA double-strand breaks (DSB) induced in CCD-34Lu cells by different γ-ray doses. The kinetics of DNA repair was assessed by analyzing the fluorescence decrease of γ-H2AX foci measured by SOID (Sum Of Integrated Density) parameter and counting foci number in...
متن کاملTargeting DNA repair with PNKP inhibition sensitizes radioresistant prostate cancer cells to high LET radiation
High linear energy transfer (LET) radiation or heavy ion such as carbon ion radiation is used as a method for advanced radiotherapy in the treatment of cancer. It has many advantages over the conventional photon based radiotherapy using Co-60 gamma or high energy X-rays from a Linear Accelerator. However, charged particle therapy is very costly. One way to reduce the cost as well as irradiation...
متن کاملError-prone nonhomologous end joining repair operates in human pluripotent stem cells during late G2
Genome stability of human embryonic stem cells (hESC) is an important issue because even minor genetic alterations can negatively impact cell functionality and safety. The incorrect repair of DNA double-stranded breaks (DSBs) is the ultimate cause of the formation of chromosomal aberrations. Using G2 radiosensitivity assay, we analyzed chromosomal aberrations in pluripotent stem cells and somat...
متن کاملA novel DNA-dependent protein kinase inhibitor, NU7026, potentiates the cytotoxicity of topoisomerase II poisons used in the treatment of leukemia.
We report for the first time the use of a selective small-molecule inhibitor of DNA repair to potentiate topoisomerase II (topo II) poisons, identifying DNA-dependent protein kinase (DNA-PK) as a potential target for leukemia therapy. Topo II poisons form cleavable complexes that are processed to DNA double-strand breaks (DSBs). DNA-PK mediates nonhomologous end joining (NHEJ). Inhibition of th...
متن کامل